Remote sensing of near-infrared chlorophyll fluorescence from space in scattering atmospheres: implications for its retrieval and interferences with atmospheric CO2 retrievals
نویسنده
چکیده
With the advent of dedicated greenhouse gas space-borne spectrometers sporting high resolution spectra in the O2 A-band spectral region (755–774 nm), the retrieval of chlorophyll fluorescence has become feasible on a global scale. If unaccounted for, however, fluorescence can indirectly perturb the greenhouse gas retrievals as it perturbs the oxygen absorption features. As atmospheric CO2 measurements are used to invert net fluxes at the land–atmosphere interface, a bias caused by fluorescence can be crucial as it will spatially correlate with the fluxes to be inverted. Avoiding a bias and retrieving fluorescence accurately will provide additional constraints on both the net and gross fluxes in the global carbon cycle. We show that chlorophyll fluorescence, if neglected, systematically interferes with full-physics multiband XCO2 retrievals using the O2 A-band. Systematic biases in XCO2 can amount to +1 ppm if fluorescence constitutes 1 % to the continuum level radiance. We show that this bias can be largely eliminated by simultaneously fitting fluorescence in a full-physics based retrieval. If fluorescence is the primary target, a dedicated but very simple retrieval based purely on Fraunhofer lines is shown to be more accurate and very robust even in the presence of large scattering optical depths. We find that about 80 % of the surface fluorescence is retained at the top-of-atmosphere, even for cloud optical thicknesses around 2–5. We further show that small instrument modifications to future O2 Aband spectrometer spectral ranges can result in largely reduced random errors in chlorophyll fluorescence, paving the way towards a more dedicated instrument exploiting solar absorption features only.
منابع مشابه
Impact of Aerosol Property on the Accuracy of a CO2 Retrieval Algorithm from Satellite Remote Sensing
Based on an optimal estimation method, an algorithm was developed to retrieve the column-averaged dry-air mole fraction of carbon dioxide (XCO2) using Shortwave Infrared (SWIR) channels, referred to as the Yonsei CArbon Retrieval (YCAR) algorithm. The performance of the YCAR algorithm is here examined using simulated radiance spectra, with simulations conducted using different Aerosol Optical D...
متن کاملA Fast Atmospheric Trace Gas Retrieval for Hyperspectral Instruments Approximating Multiple Scattering - Part 1: Radiative Transfer and a Potential OCO-2 XCO2 Retrieval Setup
Satellite retrievals of the atmospheric dry-air column-average mole fraction of CO2 (XCO2) based on hyperspectral measurements in appropriate near (NIR) and short wave infrared (SWIR) O2 and CO2 absorption bands can help to answer important questions about the carbon cycle but the precision and accuracy requirements for XCO2 data products are demanding. Multiple scattering of light at aerosols ...
متن کاملEvaluation of MODIS-Aqua Atmospheric Correction and Chlorophyll Products of Western North American Coastal Waters Based on 13 Years of Data
There is an increasing need for satellite-derived accurate chlorophyll-a concentration (chla) products to improve fisheries management in coastal regions. However, the methods used to derive these products have to be evaluated, so the associated uncertainties are known. The performance of three atmospheric correction methods, the near infrared (NIR), the shortwave infrared (SWIR), and the Manag...
متن کاملOptical remote sensing of coastal waters from geostationary platforms: a feasibility study - Mapping Total Suspended Matter with SEVIRI
Geostationary ocean colour sensors do not yet exist, but are under consideration by a number of space agencies. This study tests the feasibility and assesses the potential for optical remote sensing of coastal waters from geostationary platforms, with the existing SEVIRI (Spinning Enhanced Visible and InfraRed Imager) meteorological sensor on the METOSAT Second Generation platform. Data are ava...
متن کاملRetrievals of atmospheric CO2 from simulated space-borne measurements of backscattered near-infrared sunlight: accounting for aerosol effects.
Retrievals of atmospheric carbon dioxide (CO2) from space-borne measurements of backscattered near-infrared sunlight are hampered by aerosol and cirrus cloud scattering effects. We propose a retrieval approach that allows for the retrieval of a few effective aerosol parameters simultaneously with the CO2 total column by parameterizing particle amount, height distribution, and microphysical prop...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012